

Abstract

In this paper we implement some of the known water
models for simulating surfaces in real-time. We also
implement an easy-to-use text interface, allowing the user to
change conditions in run time.

Introduction and Goals

This paper implements some of the known water models for
surface simulation.
This includes:

• Gerstner Waves
• Fast Fourier Transforms
• Statistical Wave Models (Phillips)

Our goal has been to make it possible for us to render this
in real-time with a quality that resembles of real ocean
surface. These notes will describe for you how to make a
height-field displacement mapped surface that will look like
figure 1. We will not cover optical effects though, like
reflection/refraction and transmission, since it is out of
scope for this project.

Ocean Wave Algorithms

To generate an ocean surface we need to build a height-
field. To get the best result we use a method based on Fast
Fourier Transforms (FFT), although we will start with a
simpler description called Gerstner Waves. Complete
description can be found in [1].

Gerstner
Gerstner waves are almost 200 years old and were used to
approximate the solution to fluid dynamics. It describes the
surface in terms of the motion of individual points on the
surface. If a point on the undisturbed surface is labelled x0 =
(x0 , z0) and the undisturbed height y0 = 0, the point on the
surface is displaced at time t to

x = x0 – (k/k) Asin(k• x0 - ω0)
y = Acos(k• x0 - ω0)

when a single wave with amplitude A passes by.
The wave vector k points in the direction of travel of the
wave, and it has magnitude

 k = 2π/λ

This will only result in a single wave passing the surface, not
very realistic. Instead we are summing a set of sine waves to
create a more complex profile.

x = x0 – ∑((ki – ki) Ai sin (ki• x0 – ωit + Φi))

y = ∑(Ai cos (ki• x0 – ωit + Φi))

To animate the Gerstner waves we change the frequency ωi.
There is a known relationship between these frequencies
and the magnitude of the wave vector ki.

 ω2 (k) = gk (g is 9.8 m/sec2)

FFT
Here we will present the algorithm that produces the best
result and it has been used commercially several times. It
uses statistical models based on observations of the real sea.
(Used in Titanic and Waterworld).

In the statistical model of sea, wave height is a random
variable of horizontal position and time

h(X,t)

It decomposes the wave height-field into a set of sinus waves
with different amplitudes and phases. We use FFT to
evaluate these sums.

FFT allows us to evaluate the following

h(X,t) = ∑(h (K,t)eiK*K)

The wave vector K points in the direction of travel of the
wave, and it has magnitude

 k = 2π/λ

When we want to generate a height-field we start by
calculating h0

h0(K,t) = 1/sqrt(2)(Gaussian * (i)Gaussian)sqrt(Ph(K)

where

Ph(K) = a (e-1/(kl)^2)/k4 |KW|2

is the Phillips spectrum.

The parameter l is the windspeed2 / gravity

The last term |KW|2 eliminates waves moving perpendicular
to the wind direction.

Now when we have calculated h0(K,t) we can animate the
set with

h(K,t)= h0(K,t) eiω(K)t + conj(h0(K,t)) e-iω(K)t

ω2 (k) = gk (g is 9.8 m/sec2)

Choppy

The FFT transform generates nice looking waves that all
have round tops. This is fine for nice weather situations, but
no good for stormy conditions. In order to make the waves
have more sharp tops an algorithm can be implemented.

The idea is to displace the grid points slightly in the
horizontal plane to make the waves more sharp and the
valleys between the waves wider.
The equation used looks as follows:

),(tXDXX λ+=

Where X is the vertical position X=(x, z), λ is a scale
factor and D is the displacement vector calculated with the
FFT:

∑−=
k

iKtetKh
k
KitXD),(~),(

Figur 1 FFT waves with resolution 512*512

We have noticed that a resolution of 128 can be rendered in
real-time with a good visual result. However, a resolution of
512 gives the best result compared to rendering time.

Figur 2 FFT waves with resolution 512*512

Rendering and Animation

The dataset can be rendered in several different ways. The
user can render the vertecies as points, or as a triangle mesh
(wire frame or solid).
The surface is texture mapped with reflection mapping that
can be blended with surface colors by the user. The
reflection texture can also be changed in runtime.
It is also possible to render the surface normals.
The user can also render the amplitudes fed into the Fourier
transform.

Functions to save renderings from the application makes it
possible for the user store images to a directory. These
images are numbered in a sequence and can be used to make
an animation of a dataset that is too large to be rendered in
real time.
The system uses a dynamic step size that depends on frame
rate. When rendering to a file is turned on the step size is set
to a fixed 0.04 seconds per frame (25 frames per second).

All data in the application is stored in one dimensional
arrays to speed up the application.
The double values used to set normals and grid points are
fed directly in to the calculations to avoid extra loops and
gain performance. At the moment the application runs in
30-50 frames per second with a grid resolution of 64*64 on
a 700 MHz laptop with a ATI Mobility M4 graphics card.

To control the application the user is given a text console.
Commands can be typed in to set variables, switch
rendering or normal mode, or save images.

We have implemented the algorithms using a PC platform
with windows. We programmed it using C++ and OpenGL.
The FFT came from [3].

Summary

We feel that we have achieved our goal to implement water
surface animation models in a real time application. It runs
30-50 frames per second on a 700 MHz Pentium laptop in
resolution 64*64 on the grid. We have also gone beyond
this goal and implemented a save rendering function that
makes it possible to save renderings of datasets too high for
real time performance.
Our application can also be used to compare two different
surface animation models, and to demonstrate the fast
Fourier transform.

References

[1] Jerry Tessendorf “Simulating Ocean Water”
 SIGGRAPH 2001 Course Notes
[2] Lasse Staff Jensen “Deep Water Animation and

Rendering” Funcom Oslo AS
[3] “Numerical Recipes in C++ , The Art of Scientific

Computing”
 2nd Edition ISBN 0521750334
[4] “OpenGl Programming Guide, 3rd Edition”
 ISBN 0201604582

